电话:13485538018
您当前的位置:首页 > 职场资讯 > 天津资讯

南开大学JHM:基于氮自掺杂生物炭的无金属电芬顿自由基和非自由基协同降解

来源:天津人才网 时间:2023-01-27 02:06:42 作者:天津人才网 浏览量:
点击上方蓝色字 关注我们呀~~~

第一作者:Ting Zhang
通讯作者:董恒教授
通讯单位:南开大学
论文DOI10.1016/j.jhazmat.2022.129063


图文摘要




成果简介
最近,南开大学环境科学与工程学院董恒老师团队在Journal of Hazardous Materials期刊上发表题为“Radical and non-radical cooperative degradation in metal-free electro-Fenton based on nitrogen self-doped biochar”的文章。在这项研究中,为了实现可持续的无金属电子芬顿,作者通过热解咖啡渣制备了N自掺杂生物炭空气阴极(BCAC)。在热解过程中,内源氮从边缘掺杂转变为石墨掺杂。特别是当峰值温度超过 700°C时,N空位开始演变。在4 mA·cm-2的电流密度下,BCAC上的四环素去除率高达 70.42%。采用结合ESR光谱的淬火测试来识别阴极上产生的特定氧化剂。结果表明,•OH(37.36%)、•O2-(29.67%)和1O2(24.17%)在去除四环素方面的作用相当,表明我们的电芬顿系统中自由基和非自由基氧化剂并存。根据结构表征和DFT计算,石墨N被认为是H2O2生成的关键位点,石墨N和吡啶N都是H2O2活化成•OH的电活性位点。石墨N和N空位具有更强的O2吸附和电子俘获能力,被提议作为1O2 和•O2-形成的电活性位点。这项工作预测了一种新型的电芬顿工艺,在温和条件下对N自掺杂碳质催化剂进行自由基和非自由基协同降解,这对于促进可持续的电芬顿技术具有极其重要的意义。



图文导读


1. BC的表征

Fig. 1. (a)SEM image of BC-900; (b)TEM image of BC-900; (c) HRTEM image of BC-900; (d) SEM-EDX elemental mapping image of BC-900 for C and N; (e) AFM image of BC-900 on mica substrate; (f)The height distribution map of BC-900 on mica substrate.

Fig. 2. (a)TGA and DTG curves of the precursor of BC conducted in N2 atmosphere; (b) XRD patterns, (c) N2 adsorption–desorption isotherms, (d) pore size distributions, (e) Raman spectra, (f) FTIR spectra of BC-500, BC-600, BC-700, BC-800 and BC-900.

Fig. 3. XPS spectra of BCs: (a) C1s, (b) O1s, (c) N1s; (d) Absolute weight changes of C, O and N in BC with pyrolysis temperatures; (d) Relative nitrogen content of BC-500, BC-600, BC-700, BC-800 and BC-900.

2. ORR的电催化活性

Fig. 4. (a) O2 TPD of BC-700, BC-800 and BC-900; (b) Nyquist plots of EIS spectra at open circuit potential and equivalent circuit mode; (c) Tafel diagram; (d) Cyclic voltammograms in [Fe(CN)6]3−/4− at 50 mV s-1; (e) CV curves in the atmosphere of N2 and O2 respectively (The electrolyte: 50 mM Na2SO4 solution; potential window: 0.4 V~ −1.0 V vs. Ag/AgCl; scanning rate:10 mV s−1); (f) Electron transfer number for the BCAC-500, BCAC-600, BCAC-700, BCAC-800 and BCAC-900.

3. BCAC降解四环素

Fig. 5. (a) Performance of TC adsorption and electrochemical degradation; (b)Corresponding TOC removal in 120 min; (c) Multi-running of BCAC (Conditions: 5 mM Na2SO4,100 mg L-1 TC, j = 4 m A cm-2).



4、BCAC对ORR的电催化机理

Fig. 6. (a) DMPO-•OH ESR spectra; (b) DMPO-•O2- ESR spectra; (c) TMP-1O2 ESR spectra of BC-900; (d) TC degradation in the quenching tests with BCAC-900 under N2/air atmosphere; (e) Kinetics inhibition rate for different scavengers under N2/air atmosphere; (f) Contribution rate of the oxidants for TC degradation.

Fig. 7. Energy evolutions for reaction path calculation: (a) 4e- reaction paths and (b) 2e- reaction paths of ORR; Adsorption structure of oxygen molecule on N-doped graphene (c)graphite N, (d)pyridine N.

Fig. 8. Energy gap between triplet and singlet oxygen molecules.



小结

通过在500、600、700、800和900°C的峰值温度下热解咖啡渣,在没有任何外部N源的情况下制备了一系列N自掺杂生物炭。将粉末状生物炭卷成均匀的空气阴极,用于电化学 ORR和污染物降解实验。在热解过程中,内源N从边缘掺杂转变为图形掺杂。此外,当温度高于700 °C 时,由于N流失,N空位逐渐演变。BCAC的降解能力通过BCAC-900在 4 mA·cm-2电流密度下120分钟内70.42%的TC去除率得到验证。对阴极产生的特定氧化剂的研究表明,•OH(37.36%)、•O2-(29.67%)和 1O2(24.17%)在TC去除中的作用相当。实验和理论分析表明,石墨N 是H2O2生成的关键位点,石墨N和吡啶N都是H2O2活化为•OH 的电活性位点。石墨N和N空位是产生•O2-1O2的电活性位点,因为它们具有更强的O2吸附和电子俘获能力。这项工作提出了一种创新的EF工艺,该工艺基于N自掺杂碳质催化剂在中性pH值下协同自由基和非自由基降解,这对于开发可持续的EF技术极具价值。

文献信息:

Ting Zhang, et al. Radical and non-radical cooperative degradation in metal-free electro-Fenton based on nitrogen self-doped biochar, Journal of Hazardous Materials, 2022

论文DOI: 
https://doi.org/10.1016/j.jhazmat.2022.129063




声明:本文仅为了分享与交流学术成果,无任何商业用途。如涉及侵权,请联系我们及时修改或删除。邮箱:ecologyor@sina.com。由于微信修改了推送规则,请大家将《高级氧化圈》加为“星标,或每次看完后点击页面下端的“在看”,这样可以在第一时间收到我们的推文,谢谢! 



微信扫一扫分享资讯
微信公众号
手机浏览

2020 All Rights Reserved 版权所有 天津人才网 皖ICP备20008326号-16

地址:天津市滨海新区 EMAIL:admin@rc.tj.cn

Powered by PHPYun.

用微信扫一扫